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1 Introduction

For many time-dependent Partial Differential Equations, particularly those

which admit solutions with evolving sharp features such as fronts, use of

moving grids can be an extremely nse_'ul tool for obtaining accurate numer-

ical solutions efficiently. A number of moving grid procedures have been

suggested for different problem classes ([1], [16], [181, [9], [21], [11])

Grid adaptive strategies for time-dependent partial differential equa-

tions essentially fall into one of two categories: those where grid adaptation

is carried out at discrete time levels, and those where the adaptive process

is performed continuously in time. In some instances this distinction is

weak since a discrete time adaptive strategy can sometimes be regarded as

a discretisation of an underlying differential equation which describes grid

motion (Coyle, Flaherty & Ludwig [711. Coyle et al. ([71/ give examples

where such Ordinary DifferetiaI Equations's describing the moving grid are

nonlinearly unstable even for simple smooth problems such as the equation

of linear heat conduction

U, =aU.: (I)

SO that very highly oscillatory grid motions result.

These studies have important bearing on the hnplimentation of adaptive

&-ridding strategies in Method of Lines software ([151, [41, [201, [191, [13])

where Ordinary Differential Equation (or Differential Algebraic Equation)

solvers are used to solve the Ordinary Differential _quations resulting from

spatial discretisation. A rapid grid motion will certainly introduce stiffness

if the PDE solution'is evolving on a slower time scale.

In the Moving Finite Element 1V[ethod of Miller ([i6], [6]: [1011 (see also

[17],[12],[3])and the work of Xdjerid & Flaherty [1],'[2],the grid motion

equations are solved simultaneously with the equations which describe the

PDE solution on the moving grid. In such situations, the smoothness in

time of the spatial cliscretisationiscertaiMy an important factor.

In this paper we describe the resultsof a seriesof numerical experiments

which are designed to examine how good a solution one can hope to achieve

by continuously adapting the computational grid. The experimental set-up

issimple: piecewise linearfiniteelements (linearsplines) on a closed interval

in one dimension. The two boundary nodes are"fixed, and the number of

free internal nodes is not varied. Precisely we investigate the problem of

computing the opt_al grid node positionsof the best leastsquares freeknot
• i

linear spline approximation to the spatial solutm_x of a PDE at different

times. The loci of such optimal positions define an optimal trajectory for
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each node. The ensemble of these nodal trajectories defines the optimal

moving grid in this norm. Piecewise linear representation is used here

simply because, it is a common choice. The choice of least squares norm is

more arbitrary, however the results of Cullen & Morton [8] (see also [9], [3])

indicate that this may be an appropriate norm at least for the finite element

method. The results of Carey & Dinh [5] show that the free knot linear

spline interpolation problem in the least squares' norm is approximately

equivalent to equidistribution of the monitor function (f")(=/5).

The problem of free knot spline apprc_dmation is nonlinear and great

care is required to isolate the global minimum from potentially many lo-

cally optimal fits. In the work reported here, we have used a code based

on the hybrid technique described by Loach and Wathen [14] for the ap-

proximation problem. Though no proof of global convergence exists for

this algorithm, there is considerable evidence that the solutions it produces

axe indeed globally optimal. The testing of this routine used considerably

more complicated test functions than the solutions of simple PDE's pre-

sented here.

The planned comparison with proposed adaptive strategies became ir-

relevant when the highly non-smooth character of the optimal grid node

positions was observed even for the two very simple problems that were

used in this study.

We should emphasise that the computation of the optimal approxima-

tion is an expensive procedure, and relies on exact knowledge of the PDE

solution. The numerical techniques that we use here are therefore not at all

suitable as practical moving grid methods for partial differential equations.

In section 2 we describe the experiment and we show sample results in

section 3. Section 4 covers our deductions and conclusions.

2 Optimal Grid Experiment

It was desired to consider both parabolic and hyperbolic problems, thus

two test problems were used.

The first was the parabolic problem of linear heat conduction

ut=uz,, 0_<=_<1, t>__O (2.1)
J
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with homogeneous Neumann boundary conditions, un - 0 (here n is the

normal direction to the bounds-,7). In order that there be a rapidly com-

putable analytic solution, initial data with few Fourier modes is employed.

If a single mode is used, the PDE solution is simply an exponential decay

of this original mode. The scale-invariance of the 12 best fit equations then

implies that the nodal positions in the optimal grid are fixed independently

of time. The initial data is thus chosen as

u(x, t = 0) = eoa_rx + eos21rz (2.2)

so that the analytic solution is simply

"uCz, t ) = e-'P'eos_rz 4- e-4_teoa27rz. (2.3)

For every instant in time, t, this describes the function to be approximated

by the optimal free knot linear spline in space ,x.

The second problem is the viscous Burgers' equation

ut+uuffi=euffi=, O_z<:l, t__0 (2.4)

which is nearly hyperbolic for small values of e. k particular analytic

solution of this problem can be found using the Cole-Hopf transformation

giving

uCx, t) = f(¢) (2.5)

where

-- z-/_t -- _ (2.6)

and

e is takfin as 0.01, and the arbitrary constants _, B and p are chosen to be

0.4, 0.125 and 0.6 respectively so that the solution is a right-ward moving

steep front as t increases. The boundary conditions are time-dependent

Dirichlet conditions taken from this exact solution.

For the near hyperbolic problem, the characteristics of the correspond-

ing purely hyperbolic problem ut +uuffi "- 0 are likely to be near the optimal

trajectories in this approximation experiment because of the advective na-

ture of the solution. However, for the parabolic heat flow equation, no a

priori 'good' node trajectories are apparent.
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The approximation problem is solved with fixed knots at the boundary

points 0 and 1, but free spline values at these end points. That is, if

x0 = 0,xn+x = 1 are fixed knots and xl, z2,...,zn are free knots, and a_

is the value taken by the linear spline S at z_ for i = 0,1, ...n + 1, then

the approximation problem is to minimise IIf- SI1_2[0.1] with respect to

xi, i = 1,2,...,n and _,i = 0,1,...,n + 1, where f is the function to be

approximated.

3 Computational Results

We describe first the results for the linear heat flow equation.

The simplest case we have considered is when the piecewise linear ap-

proximating function has only four (free) knot points. We present four

figures to display the results.

Figure 3.1 shows the loci of the optimal nodal trajectories, the analytic

solution at selected times, and the best free knot spline approximants to

the analytic solution at these instants, all plotted in the u-x plane. That is,

we have plotted the analytic solution (dotted line) and its best least squares

fit (dashed line) at a number of discrete times, and at many smaller time

intervals have plotted the optimal location in u-x space of the optimal node

position. These latter are joined by the solid line to indicate the loci of the

node points which define the optimal grid.

One immediate observation is that the optima! node point trajectories

undergo a discontinuous jump at two particular instances t _ 0.007 and

t _ 0.058 during 0 __ t __ 0.91 which is the time interval chosen for the

experiment. Figure 3.2 shows only the nodal trajectories in u-x space,

and figure 3.3 shows these same trajectories when projected onto the x-t

plane. The qualitative similarity of this last representation with the results

presented in Adjerid & Flaherty ([2]) is striking. The x-t trajectories of

nodes in an adaptive grid presented in Adjerid & Flaherty appear to move

smoothly at times and then to veer sharply. There appears a close analogy

between this veering and the precisely discontinuous nature of the optimal

grid. Figure 3.4 shows the least squares error of the optimal linear spline. It

is continuous as is expected, but appears to have a discontinuous derivative

at the two instances when the node positions jump.

5
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We show the results of one other experiment on the same problem but

with ten free nodes. We present the results graphically as above in figs 3.5,

3.6, 3.7 and 3.8. We are again able to clearly see discontinuous motion of the

optimal nodal trajectories, though they are apparently piecewise smooth.

The 12 error is again continuous in time.

Several other experiments were performed on this heat flow problem

with qualitatively similar results. We comment that there appear to be

no 'boundary effects' caused by our choice of end conditions for this test

problem.

Several experiments for the Viscous Burgers Equation were performed.

We present only the results for 2, 3 and 6 free nodes. The graphical results

are presented in the same way as for the heat flow equation

For the 2 node solution the optimal nodal trajectories are actually

smooth as shown in figs. 3.9, 3.10 and 3.11. They are almost exactly

characteristic trajectories for.the corresponding hyperbolic problem (e - 0)

though they are slightly curved. The least squares error is smooth (fig.

3.12) from t = O to t - 1.16 which is the period of the experiment.

When 3 free nodes are used, figures 3.13, 3.14 and 3.15 show how-

ever that the optimal nodal trajectories are again discontinuous. The least

squares error (fig. 3.16) is continuous but, as before, has a 'corner'. This

problem is also run from _ -- 0 to t - 1.16.

For our final experiment we have run from t -- -0.23, when the steep

front is just moving into the domain, until t - 1.21. In this case we used

8 free nodes. The results plotted in figures 3.17, 3.18, 3.19 and 3.20 show

the discontinuous movement of the nodes as the front enters the domain

followed by smooth characteristic-llke motion as the front moves across the

domain. The l_ error is again seen to be continuous. We see in this example

the effect of the solution entering through the domain boundary. Even

for the corresponding hyperbolic inviscid Burgers' equation, a boundary

condition at this left hand boundary would be required as the characteristics

enter the domain here.

g
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4 Conclusions

We have computed the optimal nodal trajectories of best free knot spline

approximations to the solutions of two one-dimenslonal test problems. That

is, we have computed the moving grids on which the analytic solution of

the partial differential equation can be best represented at every instant of

time by a linear spline with a fixed number of nodes.

We find that the optimal nodal trajectories are discontinuous for both

of our test functions - the parabolic linear heat conduction equation and

the nonlinear convection-dominated viscous Burgers' equation. In the lat-

ter case the optimal paths are similar to characteristic trajectories of the

corresponding hyperbolic equation (the Inviscid Burgers' equation) when

the solution is not significantly influenced by the boundaries.

For more complicated time-dependent partial differential equation prob-

lems, we must expect to obtain similar behaviour in general.

We conclude that global optimal approximation continuously in time is

not a useful property to try to achieve with a moving grid strategy because

of the difficulties in trying to time integrate discontinuous optimal nodal

paths. Regularisation may be a remedy in some situations. There may be

smooth paths associated with local optima, but there must be expected to

be locally optimal grids on which the error is large. However, following a

smooth locally optimal grid may be useful in some problems.
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Optimal Nodal Trajectories
Linear Heat Flow Equation
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Figure 3.1. Linear He_t Equation with 4 free nodes: exact solution (dot-

ted line), best fits (dashed line) and optimal nodal trajectories (full line) all

in u-x space.
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Optimal Nodal Trajectories in x-t space
Linear Heat Flow Equation
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Figxre 3.3. Linear Heat Equation with 4 free nodes: optimal nodal tra-

jectories in x-t space.
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Opdrna/Nodal Trajectories in x-t space
Linear Heat Flow Equation
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Least Squares Error
Linear Heat Flow Equation
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Figure 3.11. Viscous Burgers' Equation with 2 free nodes: optimal nodal
trajectories in x4 si_ace.
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